Abstract

We present a flexible model for a generic straight transport barrier in graphene in the specular limit. The specular limit applies for scattering of carriers sufficiently close to the Fermi level in three quarters of the transport barriers. Using the Lippmann-Schwinger equation, we obtain the wave function, from which we derive the reflection and transmission probabilities as a function of the angle of incidence. The results, which are compared to those from exact multichannel tight-binding quantum transport calculations, show that some barriers exhibit a broader absence of reflection across a wide range of incident angles, whereas other barriers are highly reflective. The power of our model is that it could be used even when the precise atomistic detail of the transport barriers is unknown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.