Abstract

In this paper, we consider resource allocation optimization problem in fourth generation long term evolution (4G-LTE) for public safety and commercial users running elastic or inelastic traffic. Each mobile user can run delay-tolerant or real-time applications. In our proposed model, each user equipment (UE) is assigned a utility function that represents the application type running on the UE. Our objective is to allocate the resources from a single evolved node B (eNodeB) to each user based on the user application that is represented by the utility function assigned to that user. We consider two groups of users, one represents public safety users with elastic or inelastic traffic and the other represents commercial users with elastic or inelastic traffic. The public safety group is given priority over the commercial group and within each group the inelastic traffic is prioritized over the elastic traffic. Our goal is to guarantee a minimum quality of service (QoS) that varies based on the user type, the user application type and the application target rate. A rate allocation algorithm is presented to allocate the eNodeB resources optimally among public safety and commercial users. Finally, the simulation results are presented on the performance of the proposed rate allocation algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call