Abstract
In this paper, we consider resource allocation optimization problem in cellular networks for different types of users running multiple applications simultaneously. In our proposed model, each user application is assigned a utility function that represents the application type running on the user equipment (UE). The network operators assign a subscription weight to each UE based on its subscription. Each UE assigns an application weight to each of its applications based on the instantaneous usage percentage of the application. Additionally, UEs with higher priority assign applications target rates to their applications. Our objective is to allocate the resources optimally among the UEs and their applications from a single evolved node B (eNodeB) based on a utility proportional fairness policy with priority to realtime application users. A minimum quality of service (QoS) is guaranteed to each UE application based on the UE subscription weight, the UE application weight and the UE application target rate. We propose a two-stage rate allocation algorithm to allocate the eNodeB resources among users and their applications. Finally, we present simulation results for the performance of our rate allocation algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.