Abstract
Mitochondrial disorders are a class of heterogeneous disorders caused by genetic variations in the mitochondrial genome (mtDNA) as well as the nuclear genome. The spectrum of mtDNA variants remains unexplored in the Indian population. In the present study, we have cataloged 2689 high confidence single nucleotide variants, small insertions and deletions in mtDNA in 1029 healthy Indian individuals. We found a major proportion (76.5 %) of the variants being rare (AF<=0.005) in the studied population. Intriguingly, we found two ‘confirmed’ pathogenic variants (m.1555 A>G and m.14484 T>C) with a frequency of ∼1 in 250 individuals in our dataset. The high carrier frequency underscores the need for screening of the mtDNA pathogenic mutations in newborns in India. Interestingly, our analysis also revealed 202 variants in our dataset which have been ‘reported’ in disease cases as per the MITOMAP database. Additionally, we found the frequency of haplogroup M (52.2 %) to be the highest among all the 18 top-level haplogroups found in our dataset. In comparison to the global population datasets, 20 unique mtDNA variants are found in the Indian population. We hope the whole genome sequencing based compendium of mtDNA variants along with their allele frequencies and heteroplasmy levels in the Indian population will drive additional genome scale studies for mtDNA. Furthermore, the identification of clinically relevant variants in our dataset will aid in better clinical interpretation of the variants in mitochondrial disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.