Abstract

Epitaxial heterostructures of γ−Al2O3/SrTiO3, grown by atomic layer deposition (ALD) and molecular beam epitaxy, have been characterized by advanced electron microscopy techniques, including aberration-corrected negative-Cs imaging, electron-energy-loss near-edge fine-structure analysis, and off-axis electron holography. Analysis of two-dimensional spectrum maps from samples that previously showed highly conductive interfacial layers revealed partial reduction of the Ti oxidation state in the SrTiO3 layer from Ti4+ to Ti3+, which was confined to within ∼1–2 unit cells of the interface. Electron holography of an ALD-grown sample revealed a phase profile within the SrTiO3 layer that rose sharply over a distance of about 1 nm moving away from the interface. Taken together, these results suggest a strong connection between reduction of oxidation state, which could be caused by oxygen vacancies and the quasi-two-dimensional electron gas present at the γ−Al2O3/SrTiO3 interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.