Abstract
Transient absorption (TA) and time-resolved photoluminescence (PL) spectroscopies have been used to provide direct spectroscopic evidence for the recently reported phenomenon of thermal "surface charging" in II-VI quantum dots (QDs). In these studies, zincblende CdSe cores are synthesized by standard methods, and a thin CdS shell deposited by the decomposition of Cd(DDTC)2, resulting in core/shell QDs with chalcogenide-rich surfaces. Following ligand exchange with oleylamine, these QDs have empty low-lying surface states that can be thermally populated from the valence band. At room temperature, the surface charging equilibrium results in some fraction of the particles having a hole in the valence band, i.e., the surface acceptor states make the particle p-type. Photoexcitation of the surface charged state results in what is essentially a positive trion, which can undergo a fast Auger recombination. Both PL and TA (bleach recovery) kinetics of the CdSe/CdS QDs show a 70 ps decay component, which is assigned to Auger recombination. The empty nonbonding surface orbitals are passivated by ligation with a trialkylphosphine, and the fast decay component is absent when tributylphosphine is present. The comparison of the TA and PL kinetics shows that the relative amplitude of the 70 ps component is a factor of about 1.5 greater in the TA than in the PL. They also show that the fast component in the PL spectrum is shifted about 6 nm to the blue of the exciton luminescence. The above observations can be understood in terms of the trion versus exciton spectroscopy and strongly support the assignment of the 70 ps transient to the decay of a trion formed from the surface charged state.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have