Abstract

In this contribution, we present an efficient and alternative method to the commonly used RF-multipole trap technique to produce He-tagged molecular ions at cryogenic temperatures, which are perfectly suitable for messenger spectroscopy. The seeding of dopant ions in multiply charged helium nanodroplets, in combination with a gentle extraction of the latter from the helium matrix, enables the efficient production of He-tagged ion species. With a quadrupole mass filter, a specific ion of interest is selected, merged with a laser beam, and the photoproducts are measured in a time-of-flight mass-spectrometer. The detection of the photofragment signal from a basically zero background is much more sensitive than the depletion of the same amount of signal from precursor ions, delivering high quality spectra at reduced data acquisition times. Proof-of-principle measurements of bare and He-tagged Ar-cluster ions, as well as of He-tagged C60 ions, are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call