Abstract

The response of cold atom gases to small periodic phase modulation of an optical lattice is discussed. For bosonic gases, the energy absorption rate is given, within linear response theory, by the imaginary part of the current autocorrelation function. For fermionic gases in a strong lattice potential, the same correlation function can be probed via the production rate of double occupancy. The phase modulation gives thus direct access to the conductivity of the system, as a function of the modulation frequency. We give an example of application in the case of bosonic systems at zero temperature and discuss the link between the phase and amplitude modulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.