Abstract

Given that bone is an intriguing nanostructured dielectric as a partially disordered complex structure, we apply an elastic light scattering-based approach to image prefailure deformation and damage of bovine cortical bone under mechanical testing. We demonstrate that our imaging method can capture nanoscale deformation in a relatively large area. The unique structure, the high anisotropic property of bone, and the system configuration further allow us to use the transfer matrix method to study possible spectroscopic manifestations of prefailure deformation. Our sensitive yet simple imaging method could potentially be used to detect nanoscale structural and mechanical alterations of hard tissue and biomaterials in a fairly large field of view.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.