Abstract

We demonstrate that the unique characteristics of random lasing in bone can be used to assess nanoscale structural alterations as a mechanical or structural biosensor, given that bone is a partially disordered biological nanostructure. In this proof-of-concept study, we conduct photoluminescence experiments on cortical bone specimens that are loaded in tension under mechanical testing. The ultra-high sensitivity, the large detection area, and the simple detection scheme of random lasers allow us to detect prefailure damage in bone at very small strains before any microscale damage occurs. Random laser-based biosensors could potentially open a new possibility for highly sensitive detection of nanoscale structural and mechanical alterations prior to overt microscale changes in hard tissue and biomaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call