Abstract
The speciation, bioavailability and transport of Pb(II) in the environment are strongly affected by dissolved organic matter (DOM). Despite the importance of these interactions, the nature of Pb(II)-DOM binding is insufficiently attested. This study addressed this deficiency using the method of differential absorbance spectroscopy in combination with the non-ideal competitive adsorption (NICA)-Donnan model. Differential absorbance data allowed quantifying the interactions between Pb(II) and DOM in a wide range of pH values, ionic strengths and Pb(II) concentrations at an environmentally relevant DOM concentration (5mgL−1). Changes of the slopes of the log-transformed absorbance spectra of DOM in the range of wavelength 242–262 and 350–400nm were found to be predictive of the extent of Pb(II) bound by DOM carboxylic groups and of the total amount of DOM-bound Pb(II), respectively. The results also demonstrated the preferential involvement of DOM carboxylic groups in Pb(II) binding. The spectroscopic data allowed optimizing selected Pb(II)-DOM complexation constants used in the NICA-Donnan Model. This resulted in a markedly improved performance of that model when it was applied to interpret previously published Pb(II)-fulvic acid datasets.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have