Abstract

Charge transport in an organic solid and its coupling with the neighboring aqueous biological environment dictates the performance of many organic bioelectronic devices. Understanding how the transport property at the solid–water interface is influenced by the surface structure characteristics of the organic solid is essential for rational design of organic bioelectronics and chemical sensors. However, in situ probing such structure–property relationships has been difficult due to lack of experimental techniques with sufficient sensitivity to the water-buried interface. Here, we demonstrate a charge accumulation spectroscopy (CAS)-based protocol, exploiting water-gated organic field-effect transistor as the testing platform, to investigate the structure-dependent localization of polaronic charge carriers at the organic semiconductor–liquid interface. Our results reveal that the degree of charge delocalization is reduced drastically when the charge carriers are moved from the bulk semiconductor to the semiconductor–water interface, suggesting the existence of a highly disordered surface layer in contact with water. It is also found that the charge delocalization could be further reduced by intercalation of chloride ions (from salt water) in the semiconductor surface layer. This study suggests that the spectroscopic signatures of polaronic charge carriers could be a sensitive probe to detect the structure-dependent charge localization at organic solid–liquid interfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.