Abstract

The Hamiltonian H of an open quantum system is non-Hermitian. Its complex eigenvalues E(R) are the poles of the S matrix and provide both the energies and widths of the states. We illustrate the interplay between Re(H) and Im(H) by means of the different interference phenomena between two neighboring resonance states. Level repulsion may occur along the real or imaginary axis (the latter is called resonance trapping). In any case, the eigenvalues of the two states avoid crossing in the complex plane. We then calculate the poles of the S matrix and the corresponding wave functions for a rectangular microwave resonator with a scatter as a function of the area of the resonator as well as of the degree of opening to a waveguide. The calculations are performed by using the method of exterior complex scaling. Re(H) and Im(H) cause changes in the structure of the wave functions which are permanent, as a rule. The resonance picture obtained from the microwave resonator shows all the characteristic features known from the study of many-body systems in spite of the absence of two-body forces. The effects arising from the interplay between resonance trapping and level repulsion along the real axis are not involved in the statistical theory (random matrix theory).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call