Abstract
Exact quantum dynamics with a time-independent Hamiltonian in a discrete state space can be computed using classical mechanics through the classical Meyer-Miller-Stock-Thoss mapping Hamiltonian. In order to compute quantum response functions from classical dynamics, we extend this mapping to a quantum Hamiltonian with time-dependence arising from a classical field. This generalization requires attention to time-ordering in quantum and classical propagators. Quantum response theory with the original quantum Hamiltonian is equivalent to classical response theory with the classical mapping Hamiltonian. We elucidate the structure of classical response theory with the mapping Hamiltonian, thereby generating classical versions of the two-sided quantum density operator diagrams conventionally used to describe spectroscopic processes. This formal development can provide a foundation for new semiclassical approximations to spectroscopic observables for models in which classical nuclear degrees of freedom are introduced into a mapping Hamiltonian describing electronic states. Calculations of the temperature-dependence of two-dimensional electronic spectra for an exciton dimer using two semiclassical approaches are compared with benchmark calculations using the hierarchical equations of motion method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.