Abstract

In the present methodical study, FT-IR and FT-Raman of the 2,4,6-Nitrophenol (TNP) called as picric acid are recorded and the observed vibrational frequencies are assigned. The hybrid computational calculations are carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31+G(d,p) and 6-311++G(d,p) basis sets and the corresponding results are tabulated. The alternation of structure of nitro phenol due to the subsequent substitutions of NO2 is investigated. The vibrational sequence pattern of the molecule related to the substitutions is analyzed. Moreover, 13C NMR and 1H NMR are calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP methods and the 6-311++G(d,p) basis set and their spectra are simulated and the chemical shifts related to TMS are compared. A study on the electronic properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, are performed by HF and DFT methods. The calculated HOMO and LUMO energies and the kubo gap analysis show that the occurring of charge transformation within the molecule. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. NLO properties related to Polarizability and hyperpolarizability are also discussed. The thermodynamic properties (thermal energy, heat capacity and entropy) of the title compound are calculated in gas phase and are interpreted with different types of phenols.

Highlights

  • The aromatic systems in conjugated with nitro group leading to charge transfer systems, have been intensely studied and their crystals are highly recognized as the materials of the future because their molecular nature combined with versatility of synthetic chemistry can be used to alter their structure in order to maximize the non-linear properties [1,2,3,4]

  • FT-IR and FT-Raman spectra of the 2,4,6-Nitrphenol were recorded and the observed vibrational frequencies were assigned depending upon their expected region

  • The vibrational sequence pattern of the molecule related to the substitutions was analyzed

Read more

Summary

Introduction

The aromatic systems in conjugated with nitro group leading to charge transfer systems, have been intensely studied and their crystals are highly recognized as the materials of the future because their molecular nature combined with versatility of synthetic chemistry can be used to alter their structure in order to maximize the non-linear properties [1,2,3,4]. The nitro substituted phenols with high optical nonlinearities are very promising materials for future optoelectronic and non-linear optical applications. The optical transparency of this crystal is quite good and it can be a potential material for frequency replication in electro-optic modulation, frequency conversion and THz wave generation of non-linear optics [5,6]. The phenol materials with very large second-order nonlinear optical (NLO) susceptibilities have attracted a lot of attention because of their potential applications in electro-optic modulation. The material of phenols with more nitro groups having the properties of large secondorder optical nonlinearities, short transparency cut-off wavelength and stable physiochemical performance which are needed in the realization of most of the recent electronic applications. The 2,4,6-Trinitrophenol (TNP), generally known as picric acid, is a nonlinear optical crystal and a well-known organic NLO crystal by its shorter cutoff wavelength, optical quality, sufficiently large nonlinear coefficient, transparency in UV region and high damage threshold [7,8]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.