Abstract
The application of porous silicon (PSi) for gas sensing devices has gained a considerable attention in the last decade. This work considers the electrical features of PSi layers prepared by electrochemical etching. We find that in order to get a better understanding of the absorption properties of PSi surface, it is necessary to know how the PSi morphology depends on the etching parameters. The physical structure of PSi, i.e., porosity, and pore size distribution can be controlled by changing the Hydrofluoric Acid concentration, current density, anodizing length and etching time in anodizing procedure. We describe our test system for gas sensors and investigate on the electrical behavior of PSi layers (p-type) in N2 gas for various fabrication conditions. The results show that the current density increases significantly as N2 gas is adsorbed. The measurements of the I-V characteristics were carried out at atmospheric pressure, room temperature, and with N2 gas as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.