Abstract
Low defect density asymmetric multiple quantum wells (MQWs) of InGaN/GaN grown on non-polar a-plane GaN substrates were investigated using time-integrated and time-resolved photoluminescence spectroscopy. Comparison of these spectra with the predicted emission energies reveals that these QWs may be spectrally resolved at low temperatures. However, a combination of thermal activation and resonant tunneling of carriers increasingly coupled the QWs, favoring emission from the lowest energy QWs with increasing temperature in a manner analogous to MQWs composed of other non-polar semiconductor materials but unlike most InGaN MQWs grown on polar substrates and influenced by the strong polarization-dependent effects.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have