Abstract
Taking Cu and Zn as examples, the pH-dependent interactions between atmospheric heavy metals (AHMs) and water-soluble organic compounds (WSOCs) in PM2.5 were analyzed by a combination of UV–vis absorption, Fourier transform infrared (FTIR) spectroscopy and excitation-emission matrix (EEM) fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC). We found metal-H ion exchange, complexation and electrostatic adsorption might occur between AHMs and WSOCs, and were generally enhanced with the increase of pH. Furthermore, these interactions were strengthened with the stepwise addition of [Cu2+] (from 0 to 500 μmol·L−1), but had a relatively slight change with the stepwise addition of [Zn2+] (from 0 to 500 μmol·L−1) generally. This indicated that the above interactions depended on the types and the concentrations of AHMs. Carboxyl, hydroxyl, carbonyl and aromatic structures of WSOCs were the major binding sites with AHMs. Humic acid-like substances were the dominant components of WSOCs binding with AHMs. The ratios of the apparent fluorescence quantum yields of the low and the high conjugation fractions of WSOCs (QExL/H) declined by more than 28% as adding [Cu2+], indicating the formers had more strong complexing capacity with AHMs. AHMs might significantly impact the light absorption capacity and the wavelength dependence of WSOCs. The humification index (HIXem) declined more than 15% as adding [Cu2+] at pH 5.6 and 7.5, indicating AHMs might weaken the oxidation capacity of WSOCs. These results implied the interactions between AHMs and WSOCs might play a profound role in atmospheric environment, human health, and global climate change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.