Abstract

The excitation-emission matrix (EEM) fluorescence spectroscopy was used to characterize the fluorescence properties of water-soluble organic compounds (WSOCs) in PM2.5 coupled with parallel factor analysis (PARAFAC). Three main components of WSOCs were extracted from PM2.5, i.e., humic-like (fulvic acid-like and humic acid-like) substances (HULIS), and soluble microbial by-product-like or aromatic protein-like, respectively. A fluorescence quenching experiment was designed to systematically analyze the interaction laws of atmospheric heavy metal ions and WSOCs in PM2.5. Our study revealed HULIS, especially the humic acid-like substances, might be principal substances binding with metal ions and the strength of interactions was related to the types and concentrations of metal ions. Furthermore, EEM was a powerful tool to understand the interaction laws of atmospheric heavy metal ions and WSOCs in PM2.5. This work implied that the interactions of atmospheric heavy metal ions and WSOCs might directly or indirectly play a significant role in atmospheric environment and public health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.