Abstract

Electrochemical “reduction” of Pt was investigated using electrochemical and X-ray photoelectron spectroscopy (XPS) techniques. This transformation of a platinum metal, which is possible with a large variety of organic and inorganic cations, was investigated in DMF containing CsI salts chosen as a test system. Experiments show that considerable modifications of the chemical nature of the starting material accompany the morphological changes that were previously reported. With rather mild reduction conditions, cesium-platinides-like structures were detected. XPS investigations bring a direct spectroscopic evidence for the formation of a reduced platinum state from a metallic electrode held at a negative potential. XPS spectra clearly showed a significant and continuous shift of the Pt formal oxidation degree with the injected charge of −1.6. This behavior is analogous to a charging process. Additionally, proofs of the full reversibility of the phenomenon was provided by the XPS analyses showing that the “reduced Pt” returns to its metallic state after reaction with a diazonium salt. It is noticeable that the formation of negative oxidation state of Pt exists even when a large competitive electrochemical process occurs, as in our case with the reduction of protons from residual water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call