Abstract

A series of nanocrystalline diamond (NCD) films were deposited by a custom made microwave plasma enhanced chemical vapor deposition apparatus with linear antenna delivery at different substrate temperatures (520–600°C) and pulsed plasma frequencies (2.7–14.3kHz) in a hydrogen rich working gas mixture of H2/CH4/CO2. Films were deposited onto naturally oxidized Si wafers pre-seeded with nanodiamond particles. Spectro-ellipsometry characterization of the NCD films was carried out considering various model structures (single and bi-layer models) and various NCD optical constant parameterizations (Tauc–Lorentz and effective medium approximation with different non-diamond component representations). It has been shown that substrate temperature can be lowered with a simultaneous increase in pulsed plasma frequency while still providing high quality NCD films with non-diamond component fraction in the bulk layer of about 5% (identically estimated by ellipsometry and Raman spectroscopy). Films' thickness and their surface roughness were found consistent with atomic force and secondary electron microscopies. Among various NCD structure models the most appropriate has been selected.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.