Abstract

The elemental mapping techniques in analytical transmission electron microscopy (TEM), energy filtered imaging (EFTEM) and EDX-mapping, are shown to provide new routes for tomographic reconstructions of 3D chemical maps on the nanoscale. The inelastic scattering does not only provide chemical sensitivity but also improves the linear projection relationship between mass density and image intensity, which often fails in bright field TEM of crystalline materials due to diffraction contrast. Instrumental requirements and artefact sources within the contrast formation mechanisms and within the numerical reconstruction are assessed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.