Abstract

The possibility of automatically aligning the transmission electron microscope (TEM) is explored using an approach based on artificial intelligence (AI). After presenting the general concept, we test the method on the first step of the alignment process which involves centering the condenser aperture. We propose using a convolutional neural network (CNN) that learns to predict the x and y-shifts needed to realign the aperture in one step. The learning data sets were acquired automatically on the microscope by using a simplified digital twin. Different models were tested and analysed to choose the optimal design. We have developed a human-level estimator and intend to use it safely on all apertures. A similar process could be used for most steps of the alignment process with minimal changes, allowing microscopists to reduce the time and training required to perform this task. The method is also compatible with continuous correction of alignment drift during lengthy experiments or to ensure uniformity of illumination conditions during data acquisition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.