Abstract
Evaluating societal risks posed by uranium contamination from waste management facilities, mining sites, and heavy industry requires knowledge about uranium transport in groundwater, often the most significant pathway of exposure to humans. It has been proposed that uranium mobility in aquifers may be controlled by adsorption of U(VI)−carbonato complexes on oxide minerals. The existence of such complexes has not been demonstrated, and little is known about their compositions and reaction stoichiometries. We have used attenuated total reflectance Fourier transform infrared (ATR-FTIR) and extended X-ray absorption fine structure (EXAFS) spectroscopies to probe the existence, structures, and compositions of ⋮FeOsurface−U(VI)−carbonato complexes on hematite throughout the pH range of uranyl uptake under conditions relevant to aquifers. U(VI)−carbonato complexes were found to be the predominant adsorbed U(VI) species at all pH values examined, a much wider pH range than previously postulated based on analogy t...
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have