Abstract

A series of Dy3+-activated Ba2La8(SiO4)6O2 phosphors were synthesized using the solid-state method with the objective of developing single host white light emitting phosphors for use in solid state lighting applications. The Dy3+ concentration varied between 0.01 and 0.05 mol%. The as-prepared phosphors crystal structure, optical, and photoluminescent properties (PL), along with energy transfer mechanism and luminescence decay, were investigated. The production of a single-phase Ba2La8(SiO4)6O2 with hexagonal symmetry was verified by the findings of the X-ray diffraction analysis. When the Ba2La8(SiO4)6O2: Dy3+ phosphors are exposed to ultraviolet light, they emit the characteristic yellow PL emissions caused by the 4F9/2 → 6H13/2 transition. The Judd-Ofelt (J-O) parameters (Ω2, Ω4, Ω6) were computed using the excitation spectra. The characteristics of the Dy3+ transition indicate that the asymmetric environment around the ligand was suggested by the trend, which was followed by J-O parameters. Due to the dominance of the electric-dipole transition in the luminescence spectrum, the Ba2La8(SiO4)6O2:0.03Dy3+ phosphor displayed yellowish white emission with CIE coordinates of (0.358, 0.398) and a CCT of 4724 K. The synthesized phosphor may be a useful material in the fabrication of white-emitting phosphor for LEDs application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call