Abstract

In this work, the interaction of 5-Hydroxymethyl-2-furfural (5-HMF) with calf thymus DNA (ctDNA) under simulated physiological conditions (Tris–HCl buffer of pH 7.40), was explored by UV absorption spectroscopy, fluorescence spectroscopy and molecular modeling method, using ethidium bromide (EB) as a fluorescence probe of DNA. The fluorescence quenching mechanism of EB–ctDNA by 5-HMF was confirmed to be a static quenching, which derived from the formation of a new complex. The binding constants of 5-HMF with DNA in the presence of EB were calculated to be 2.17×103, 4.24×103 and 6.95×103Lmol−1 at 300, 305 and 310K, respectively. The calculated thermodynamic parameters, enthalpy change ΔH and entropy change ΔS, suggested that both hydrophobic interactions and hydrogen bonds played a predominant role in the binding of 5-HMF to DNA. According to the UV absorption spectroscopy and melting temperature (Tm) curve results, the binding mode of 5-HMF with DNA was indicative of a non-intercalative binding, which was supposed to be a groove binding. The molecular modeling results showed that 5-HMF could bind into the hydrophobic region of ctDNA and supported the conclusions obtained from the above experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.