Abstract

Long-term and excessive use of tetracycline hydrochloride (TC) can lead to its accumulation in the environment, which can cause water contamination, bacterial resistance, and food safety problems. 2,6-Pyridine dicarboxylic acid (DPA) is a major biomarker of Bacillus anthracis spores, and its rapid and sensitive detection is of great significance for disease prevention and counter-terrorism. A bifunctional ratiometric fluorescent nanoprobe has been fabricated to detect DPA and TC. 3,5-dicarboxyphenylboronic acid (BOP) was intercalated into layered europium hydroxide (LEuH) by the ion-exchange method and exfoliated into nanosheets as a fluorescent nanoprobe (PNP). DPA and TC could significantly enhance the red fluorescence of Eu3+ through the antenna effect under different excitation wavelengths, while the fluorescence of BOP can be used as a reference based on the constant emission intensity, realizing ratiometric detection. A low limit of detection (LOD) for the target (DPA: 9.7 nM, TC: 21.9 nM) can be achieved. In addition, visual detection of DPA and TC was realized using color recognition software based on the obvious color changes. This is the first ratiometric fluorescent nanoprobe based on layered rare-earth hydroxide (LRH) for the detection of DPA and TC simultaneously, which opens new ideas in the design of multifunctional probes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.