Abstract

We investigated the binding interaction between tetracycline hydrochloride (TCH) and bovine proteins β-casein (β-CN), α-lactalbumin (α-LA) in aqueous solution by multi-spectroscopic methods and molecular modeling techniques. Fluorescence and time-resolved fluorescence showed that TCH effectively quenched the intrinsic fluorescence of bovine proteins via static quenching, while there was a single class of binding site on protein. Thermodynamic parameters revealed that electrostatic forces played major roles in the interaction between β-CN and TCH, whereas α-LA-TCH complex were stabilized by hydrogen bonds and van der Waals forces. Moreover, circular dichroism spectra (CD spectra), ultraviolet visible absorption spectra (UV–vis absorption spectra), and fluorescence Excitation-Emission Matrix (EEM) spectra results indicated the secondary structure of bovine proteins was changed in the presence of TCH with the α-helix percentage of protein-TCH complexes decreased. Molecular modeling analysis supported the experimental results well. In addition, the research of surface hydrophobicity further verified tertiary structure of proteins was changed in the presence of TCH and the possible changes of protein function. These results achieved from experiments may be valuable in the milk industry and food safety.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call