Abstract

The difference between the white and near-infrared electroluminescence of metal-oxide-semiconductor light-emitting diodes fabricated on 1,100 degrees C-annealed Si-rich SiO(x)/p-Si substrate with interfacial pyramidal Si dots (Si nano-pyramids) was characterized. By changing the substrate temperature and induced coupled plasma power during the plasma enhanced chemical vapor deposition of Si-rich SiO(x) films, the effects of the growth conditions on the defect- and Si nano-pyramid-related carrier transport and Si nanocrystal-related electroluminescence spectroscopy were also investigated. The annealed Si-rich SiO(x)/p-Si films grown at higher synthesized substrate temperate (350 degrees C) show the larger Si nano-pyramids precipitating near the Si/SiO2 interface. The indium tin oxide/Si-rich SiO(x)/p-Si/Al metal-oxide-semiconductor light-emitting diodes with Si-rich SiO(x) films exhibit different white-light electroluminescence spectra at wavelengths from 400 to 650 nm. The Si nanocrystal-related electroluminescence spectra at 650-850 nm are confirmed, whereas the electroluminescence spectra are shorter wavelengths is attributed to oxygen related defects. These defects become an electron-preferred transporting path within the Si-rich SiO(x) film, whose densities are decreased by increasing the substrate temperature or reducing the induced coupled plasma power. Defect-related white-light electroluminescence emits power for a relatively short lifetime. The lifetime can be lengthened and the electroluminescence power can be raised simultaneously by increasing deposition temperature to 350 degrees C and adjusting the induced coupled plasma power to a threshold of 30 W, which effectively increases the densities of Si nanocrystals and nano-pyramids in the Si-rich SiO(x) film with Si concentration of up to 40 at%. A nearly defect-free Si-rich SiO(x) sample can be grown under such conditions, which contributes to the most stable and largest near-infrared electroluminescence with the longest lifetime, although the power-current slope of purely Si nanopyramid related electroluminescence at near-infrared wavelengths is slightly lower.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.