Abstract

Accurate and precise measurements of spectroradiometric temperature are crucial for many high pressure experiments that use diamond anvil cells or shock waves. In experiments with sub-millisecond timescales, specialized detectors such as streak cameras or photomultiplier tubes are required to measure temperature. High accuracy and precision are difficult to attain, especially at temperatures below 3000K. Here, we present a new spectroradiometry system based on multianode photomultiplier tube technology and passive readout circuitry that yields a 0.24 µs rise-time for each channel. Temperature is measured using five color spectroradiometry. During high pressure pulsed Joule heating experiments in a diamond anvil cell, we document measurement precision to be ±30 K at temperatures as low as 2000K during single-shot heating experiments with 0.6 µs time-resolution. Ambient pressure melting tests using pulsed Joule heating indicate that the accuracy is ±80 K in the temperature range 1800-2700K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.