Abstract
Two spectrophotometric methods were developed and validated for the determination of rifampicin (RIF) in bulk form, formulations, and spiked human urine. The first method is based on the reduction of the Folin–Ciocalteu (FC) reagent by RIF to form a blue colored chromogen with λmax at 760 nm (the FCR method). In the second method, iron(III) is reduced by RIF in a neutral medium, and the resulting iron(II) is complexed with ferricyanide to form a Prussian blue peaking at 750 nm (the FFC method). Under optimum conditions, Beer's law enabled the determination of the drug in the concentration ranges 1–35 and 2.5–50 μg/mL with apparent molar absorptivities of 2.72 × 104 and 1.63×104 L/(mol × cm) for the FCR and FFC methods, respectively. The Sandell sensitivity, limits of detection (LOD), and quantification (LOQ) values were also reported for both methods. The precision of the methods, with % RSD of < 2%, was satisfactory, and the accuracy was higher than 2% (RE). The proposed methods were successfully applied to the determination of drug in capsules without interference from common additives and spiked human urine without interference from endogenous substances. A statistical analysis indicated that there was no significant difference between the results obtained by the developed methods and the official method.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have