Abstract

Colour, the first element of quality control of textile products, is a complex subject relating to physical optics, psychology, and the human visual system. Colour matching remains one of the major problems in the textile industry. Mélange yarn is a class of textile product with a specific colour appearance, which colour is mainly affected by colour matching of the dyed fibres and their ratio for spinning rather than by the dyeing process. The existing colour matching models for mélange yarn derived from specific types of fibre or specific spinning processes are restricted by the adopted conditions and parameters of the model, resulting in low universal applicability and low accuracy. In this paper, a spectrophotometric colour matching algorithm based on the back‐propagation (BP) neural network and its processes were proposed. The weighted average spectrum was predicted by a BP neural network, followed by recipe prediction from the weighted average with constrained least squares. The results showed that the average colour difference of practical samples, based on the prediction of nine blind testing targets, was 0.79 CMC (2:1) units if more than two a priori training samples were used. This result indicated the capability and practicality of accurate prediction of colour matching for top‐dyed mélange yarn by this novel method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.