Abstract

A simple, sensitive and specific method was developed for the determination of famotidine (FMT) in pharmaceutical preparations and biological fluids. The proposed method is based on ternary complex formation of famotidine (FMT) with EDTA and terbium chloride TbCl3 in acetate buffer of pH4. Alternatively, the complex is formed via the reaction with hexamine and either lanthanum chloride LaCl3, or cerous chloride CeCl3 in borate buffer of pH6.2 and 7.2 respectively. In all cases, the relative fluorescence intensity of the formed complexes was measured at 580 nm after excitation at 290 nm. The fluorescence intensity - concentration plots were rectilinear over the concentration range of 10-100, 5-70, and 5-60 ng/ml , with minimum quantification limits (LOQ) of 2.4, 2.2, and 5.2 ng/ml , and minimum limits of detection (LOD) of 0.79, 0.74, and 1.7 ng/ml upon using TbCl3, LaCl3, and CeCl3 respectively. The proposed method was applied successfully for the analysis of famotidine in dosage forms and in human plasma. The kinetics of both alkaline and oxidative induced degradation of the drug was studied using the proposed method. The apparent first order rate constant and half life time were calculated. A proposal of the reaction pathways is presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call