Abstract
A simple, economic, selective, and stability indicating spectrofluorimetric method was developed for the determination of famotidine (FMT); is based on its reaction with 9, 10-phenanthraquinone in alkaline medium to give a highly fluorescent derivative measured at 560 nm after excitation at 283 nm. The fluorescence intensity-concentration plot was rectilinear over the concentration range of 50-600 ng/ml with minimum quantification limit (LOQ) of 13.0 ng/ml and minimum detection limit (LOD) of 4.3 ng/ml. The factors affecting the development of the fluorescence intensity of the reaction product were carefully studied and optimized. The method was applied for the determination of FMT in its dosage forms. The stability of the compound was studied, and the proposed method was found to be stability indicating one. The results obtained were in good agreement with those obtained by the official method. Furthermore, the method was applied for the determination of FMT in spiked and real human plasma. The mean % recovery (n = 4) was found to be 99.94 +/- 0.24, and 105.13 +/- 0.64 for spiked and real human plasma, respectively. The composition of the reaction product as well as its stability constant was also investigated. Moreover, the method was utilized to investigate the kinetics of both alkaline and oxidative induced degradation of the drug. The apparent first order rate constant and half life time of the degradation product was calculated. A proposal of the reaction pathway was postulated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.