Abstract

The amphiphilic cyanine dye 3,3‘-bis(2-sulfopropyl)-5,5‘,6,6‘-tetrachloro-1,1‘-dioctylbenzimidacarbocyanine (C8S3) self-assembles in aqueous solution to form double-walled, tubular J-aggregates with ∼13 nm diameters and lengths up to several hundred nanometers. The redox and light absorption properties of immobilized J-aggregates on transparent, conductive indium tin oxide (ITO) electrodes have been studied directly using cyclic voltammetry (CV) in conjunction with UV−vis spectroscopy to elucidate unique mechanistic features of J-aggregate oxidation. Morphological properties were examined using in situ atomic force microscopy (AFM). Irreversible J-aggregate oxidation appears to occur primarily along the outer wall of the tubular structure as evidenced by the potential-induced irreversible bleaching of J-band absorption. Voltammetric studies as a function of scan rate and pH indicate that J-aggregate oxidation involves both electrochemical and chemical steps in which dimerization and subsequent dehydrogena...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call