Abstract

AbstractA single‐wall carbon nanotube functionalized by carboxylic groups (SWNT‐CA) was found to be adsorbed on an indium tin oxide (ITO) electrode by chemical interaction between carboxylic groups and the ITO surface. The adsorption experiments indicated that the narrow pH conditions (around pH 3.0) exist for its adsorption which is restricted by preparation of stable fluid dispersion (favorable at higher pH) and by the chemical interaction (favorable at lower pH). Atomic force microscopic (AFM) measurements suggest that fragmented SWNT‐CA are adsorbed, primarily lying on the surface. Electrochemical impedance analysis indicated that an electrochemical double layer capacitance of the SWNT‐CA/ITO electrode is considerably higher than that for the ITO electrode, suggesting that the interfacial area between the electrode surface and the electrolyte solution is enlarged by the SWNT‐CA layer. Pt particles were deposited as a catalyst on the bare ITO and SWNT‐CA‐coated ITO (SWNT‐CA/ITO) electrodes to give respective Pt‐modified electrodes (denoted as a Pt/ITO electrode and a Pt/SWNT‐CA/ITO electrode, respectively). The cathodic current for the Pt/SWNT‐CA/ITO electrode was 1.7 times higher than that for the Pt/ITO electrode at 0.0 V, showing that the Pt/SWNT‐CA/ITO electrode works more efficiently for O2 reduction at 0.0 V due to the SWNT‐CA layer. The enhancement by the SWNT‐CA layer is also effective for electrocatalytic proton reduction. It could be ascribable to the enlarged interfacial area between the electrode surface and the electrolyte solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.