Abstract

Abstract We numerically investigate the dispersive wave emission and soliton trapping in the process of femtosecond soliton propagation in silicon-on-insulator (SOI) waveguide. The cross-correlation frequency resolved optical gating (X-FROG) technique is employed to analyze the spectral–temporal dynamics of the soliton at different propagation distances. The numerical results show that dispersive wave emission can be blue-shifted (around 1300 nm) or red-shifted (around 1900 nm), which is determined by the dispersion slope for the pump wavelength (1550 nm). In addition, it can be found that red-shifted dispersive wave can supply contribution to the flatness of the supercontinuum generation. Through increasing the peak power of the soliton to 100 W, the soliton trapping can be observed by the edge of dispersive wave, which can be visualized in the form of multi-peak oscillation structure in the spectrogram when not considering the two-photon absorption (TPA). This work opens up the possibility for the realization of dispersive wave emission device in highly integrated circuit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.