Abstract
Hyperspectral image (HSI) classification is a hot topic in remote sensing community; many researchers have made a great deal of effort in this domain. Recently, deep learning-based manner paves a new way to better classification accuracy. However, the flow of information between layers and layers (e.g. max-pooling) in traditional deep architecture turns out to be ineffective. In this study, a novel spectral–spatial classification framework for HSI based on Capsule Network (CapsNet) and dynamic routing algorithm is introduced. The proposed architecture is composed of a hybrid of 1D and 2D convolutional layers and two capsule layers for better and effective mining and combining features. Consequently, experiments on two popular dataset indicate that CapsNet-based framework outperforms traditional CNN-based counterparts. Moreover, this study reveals great potential for CapsNet model in the field of HSI classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.