Abstract
Hyperspectral Image (HSI) classification plays a key role remote sensing field. Recently, deep learning has demonstrated its effectiveness in HSI Classification field. This paper presents a spectral-spatial HSI classification technique established on the deep learning based deep belief network (DBN) for deep and abstract feature extraction and adaptive boundary adjustment based segmentation. Proposed approach focuses on integrating the deep learning based spectral features and segmentation based spatial features into a framework for improved performance. Specifically, first the deep DBN model is exploited as a spectral feature extraction based classifier to extract the deep spectral features. Second, spatial contextual features are obtained by utilizing effective adaptive boundary adjustment based segmentation technique. Finally, maximum voting based criteria is operated to integrate the results of extracted spectral and spatial information for improved HSI classification. In general, exploiting spectral features from DBN process and spatial features from segmentation and integration of spectral and spatial information by maximum voting based criteria, has a substantial effect on the performance of HSI classification. Experimental performance on real and widely used hyperspectral data sets with different contexts and resolutions demonstrates the accuracy of the proposed technique and performance is comparable to several recently proposed HSI classification techniques.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have