Abstract

Nonlinear-optical performance of photonic-crystal fibers (PCFs) made of highly nonlinear TF10 glass is studied and compared with the general tendencies of nonlinear-optical interactions in fused-silica PCFs. The loss of TF10 glass PCFs prevents the generation of supercontinuum emission with a broad and flat spectrum, which typically requires propagation lengths comparable with or exceeding the attenuation length of the fiber. However, dispersive-wave emission of solitons, induced by high-order dispersion, phase-matched four-wave-mixing processes, and self-phase-modulation-induced spectral broadening are substantially enhanced in TF10 glass PCFs due to the high material nonlinearity, providing a high efficiency of frequency conversion of Cr:forsterite laser pulses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call