Abstract

AbstractInterstellar dust is traced by not only thermal emission but also scattered light. The scattered light spectrum observed from ultraviolet (UV) to near-infrared (IR) is useful to constrain some dust properties, such as size distribution, albedo, and composition. Milky Way Galaxy is a unique environment to observe the diffuse scattered light because we can extract it by removing the contribution of starlight. We have observed the UV to near-IR scattered light with space instruments, including Diffuse Infrared Background Experiment (DIRBE), Hubble Space Telescope (HST), and Multi-purpose Infra-Red Imaging System (MIRIS). The scattered light spectrum is marginally consistent with prediction from a recent dust model including carbonaceous and silicate grains with polycyclic aromatic hydrocarbon (PAH). Based on the MIRIS observation of a diffuse cloud, we compare the scattered light color with the dust model with or without grains larger than 1 micrometer. The result shows that the color is consistent with the model without the large grains, which is consistent with recent simulations of dust growth in low-density regions. However, some observations have shown the spectral excess at ∼ 0.6 micrometer wavelength, suggesting the presence of extended red emission (ERE) which cannot be explained by the conventional dust model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.