Abstract

We study spectral statistics in spatially extended chaotic quantum many-body systems, using simple lattice Floquet models without time-reversal symmetry. Computing the spectral form factor K(t) analytically and numerically, we show that it follows random matrix theory (RMT) at times longer than a many-body Thouless time, t_{Th}. We obtain a striking dependence of t_{Th} on the spatial dimension d and size of the system. For d>1, t_{Th} is finite in the thermodynamic limit and set by the intersite coupling strength. By contrast, in one dimension t_{Th} diverges with system size, and for large systems there is a wide window in which spectral correlations are not of RMT form. Lastly, our Floquet model exhibits a many-body localization transition, and we discuss the behavior of the spectral form factor in the localized phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call