Abstract
One manifestation of quantum chaos is a random-matrix-like fine-grained energy spectrum. Prior to the inverse level spacing time, random matrix theory predicts a “ramp” of increasing variance in the connected part of the spectral form factor. However, in realistic quantum chaotic systems, the finite-time dynamics of the spectral form factor is much richer, with the pure random matrix ramp appearing only at sufficiently late time. In this article, we present a hydrodynamic theory of the connected spectral form factor prior to the inverse level spacing time. We first derive a general formula for the spectral form factor of a system with almost-conserved sectors in terms of return probabilities and spectral form factors within each sector. Next we argue that the theory of fluctuating hydrodynamics can be adapted from the usual Schwinger-Keldysh contour to the periodic time setting needed for the spectral form factor, and we show explicitly that the general formula is recovered in the case of energy diffusion. We also initiate a study of interaction effects in this modified hydrodynamic framework and show how the Thouless time defined as the time required for the spectral form factor to approach the pure random matrix result is controlled by the slow hydrodynamics modes. We then extend the formalism to Floquet systems, where a ramp is expected but with a different coefficient, and we derive a crossover formula from the Hamiltonian ramp to the Floquet ramp when the Floquet drive is weak. Taken together, these results establish an effective field theory of chaotic spectral correlations which predicts the random matrix ramp at late time and computes corrections to it at earlier times.6 MoreReceived 15 December 2020Revised 12 January 2022Accepted 10 February 2022DOI:https://doi.org/10.1103/PhysRevX.12.021009Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasQuantum chaosPhysical Systems1-dimensional spin chainsTechniquesRandom matrix theorySachdev-Ye-Kitaev modelU(N) symmetryCondensed Matter, Materials & Applied PhysicsNonlinear DynamicsFluid Dynamics
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.