Abstract

Abstract The spectral latent heating (SLH) algorithm was developed to estimate apparent heat source (Q1) profiles for the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) in Parts I and II of this study. In this paper, the SLH algorithm is used to estimate apparent moisture sink (Q2) profiles. The procedure of Q2 retrieval is the same as that of heating retrieval except for using the Q2 profile lookup tables derived from numerical simulations of tropical cloud systems from the Tropical Ocean and Global Atmosphere (TOGA) Coupled Ocean–Atmosphere Response Experiment (COARE) utilizing a cloud-resolving model (CRM). The Q2 profiles were reconstructed from CRM-simulated parameters with the COARE table and then compared with CRM-simulated “true” Q2 profiles, which were computed directly from the water vapor equation in the model. The consistency check indicates that discrepancies between the SLH-reconstructed and CRM-simulated profiles for Q2, especially at low levels, are larger than those for Q1 and are attributable to moistening for the nonprecipitating region that SLH cannot reconstruct. Nevertheless, the SLH-reconstructed total Q2 profiles are in good agreement with the CRM-simulated ones. The SLH algorithm was applied to PR data, and the results were compared with Q2 profiles derived from the budget study. Although discrepancies between the SLH-retrieved and sounding-based profiles for Q2 for the South China Sea Monsoon Experiment (SCSMEX) are larger than those for heating, key features of the vertical profiles agree well. The SLH algorithm can also estimate differences of Q2 between the western Pacific Ocean and the Atlantic Ocean, consistent with the results from the budget study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call