Abstract

The effect of a zinc oxide optical spacer layer in broad-band polymer-fullerene solar cells is presented. The complimentary absorption in the donor and acceptor components allows photocurrent generation through photoinduced electron and hole-transfer mechanisms. Simulations of the optical-field distribution reveal that an optical spacer can be used to tune the spectral response to favor one photocurrent generation pathway via enhanced absorption in either the acceptor or donor component. Experimental results confirm these simulations, and the spacer is shown to enhance overall photocurrent in devices with thin active layers (<60 nm), with much less effect in thicker junctions (>90 nm).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.