Abstract
Polyethylene naphthalate (PEN) has been widely employed in highly desired flexible perovskite solar cells (F-PSCs) because of its better chemical stability and higher temperature tolerance. However, the naphthalene ring in the PEN induces poor transmittance in the ultraviolet (UV) region below 380 nm, which significantly lowers the power conversion efficiency (PCE) of F-PSCs. Here, a novel strategy is adopted by introducing UV–visible downshifting material before the PEN substrate to increase the spectral response under the UV region. The PCE of modified F-PSCs increases from 22.19 % to 22.81 % and retains the same stability as that of the control device. The optimized device shows improved photocurrent due to the enhanced spectral response in the UV region. Interestingly, the humidity resistance characteristic of the target device had also improved because of the hydrophobicity of downshifting materials. This novel strategy is distinguishable where downshifting material has been externally employed without altering the internal device architecture, which is also broadly applicable to other types of flexible solar cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.