Abstract

Three-dimensional chemical shift imaging (3D CSI) with appropriate data postprocessing can be used as a tool to improve spectral resolution in samples where large susceptibility differences and limited shim capabilities prevent good sample shimming. Data postprocessing is reduced to the realignment of individual 3D voxel spectra. As a result, the line broadening due to the field inhomogeneity over the sample's volume is reduced to the broadening by inhomogeneity within individual voxels. We compared this method with the resolution enhancement by window multiplication. We demonstrated, theoretically and experimentally, that in the presence of large, lower-order gradients, 3D CSI achieves better resolution enhancement with smaller sensitivity losses. An application of the method to a simple biological system is presented as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call