Abstract

Fourier transform near-infrared (FT-NIR) spectroscopy and partial least squares regression (PLS-R) were tested for the possibility of equilibrium moisture content (EMC) prediction in thermally modified beech wood (Fagus moesiaca C.). The samples were modified for 4h at temperatures of 170, 190 and 210 °C. After thermal modification, the samples were kept in a climatic chamber until EMC was reached. FT-NIR spectra (100 scans and 4 cm-1) were collected on the cross-section and radial surfaces at four points. PLS – R models were developed for four spectral regions: the first overtone, the second overtone, the third overtone and the combination band region. Applied thermal treatment caused a decrease of EMC by 42 % at 170 °C, by 53 % at 190 °C, and by 62 % at 210 °C. Principal component analysis (PCA) indicated that there is a difference both between treatments and between wood surfaces. The results of the spectra taken from the radial surface were, in all models, better than the spectra of the cross-section. Related to chemical changes, the first and second overtone region play an important role in the calibrations. The best prediction models for EMC of thermally modified beech wood were obtained from radial surface spectra in the first (Rp2=0.86, RPD=2.69) and second overtone region (Rp2=0.87, RPD=2.70). The obtain results could contribute to the development of predictive models in monitoring of EMC which could significantly improve the quality of industrial production of thermally modified wood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call