Abstract

We study the radiation properties of an accretion disc around a rotating black hole. We solve the hydrodynamic equations and calculate the transonic solutions of accretion disc in the presence of shocks. Then we use these solutions to generate the radiation spectrum in the presence of radiative heating and cooling processes. We present the effect of spin parameter of the black hole on the emitted radiation spectrum. In addition, attention has also been paid to the variation in energy spectral index with Kerr parameter and accretion rate. We find that spectral index becomes harder as the spin parameter changes from negative (accretion disc is counter-rotating with respect to the black hole spin) to a positive value. Finally, we compute and compare the spectral characteristics due to a free-fall flow and a transonic flow. We notice significant differences in high energy contributions from these two solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call