Abstract

Abstract The structural and spectral properties of coumarin derivatives in complex environments were investigated within the time-dependent density functional theory (TD DFT). Absorption spectra calculations were obtained at TD PBE0/6-31+G(d,p) level of theory for coumarin47 in the gas-phase and in various polar and non-polar organic solvents. The geometries of coumarins 6, 30, 47 and 522 in the gas phase and in inclusion complexes with the β-cyclodextrin (βCD) were determined by PM3 and DFT (HCTH/6-31G) calculations. Encapsulation of coumarin in βCD and associated changes in electronic structure produced either a red or blue shift in the absorption spectra of coumarins. A proposed cavity model for βCD-coumarin complex in water solution allowed identification of various contributions to the overall shift in the absorption spectra of coumarin upon complex formation in a solvent environment

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.